If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2+3t-7=0
a = 5; b = 3; c = -7;
Δ = b2-4ac
Δ = 32-4·5·(-7)
Δ = 149
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{149}}{2*5}=\frac{-3-\sqrt{149}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{149}}{2*5}=\frac{-3+\sqrt{149}}{10} $
| 117=(1/2)h(13) | | 1/2x+12=-24 | | 2/7+1/5=1/x | | 2x+50=3x+25 | | 4x^2+6x^2=4x | | 144-4x=88 | | -2(x+6)3=-11x+4(x+4) | | (x/3)-6=7 | | 4x+12(×-3)=28 | | -2(x+6)3=-11x+4(x=4 | | -2x-10=24 | | 12=2/x-6 | | 3.2w=w+.4 | | x-16=x/5 | | 4x-4=64-x | | 20-2q=4 | | 2X+6Y=2Y-3x+5 | | 2x-9+3x=-19 | | 1.5/100=x/60 | | 8=3(c | | 6k^2+29k-42=0 | | 0=7/8x-11 | | 13k=39k | | 3+6s=4s-12+19 | | 5x-4×=-×+6 | | n^2+14n=9 | | -8v+20=-6(v—5) | | n^2+14=9 | | 4z+1+17+5z=180 | | 8(10^3x)=20 | | g0+g1+g2=(1+g2) | | 450b+1/5=170 |